
7 Representability of the Picard functor II / 17.05.22 / Felix Lotter

In this talk, k will always be an algebraically closed field and X a smooth projective curve over k.
Recall that we defined the Picard functor PicX/k by the exact sequence

0 Pic(T ) Pic(XT ) PicX/k(T ) 0p∗
T

for every scheme T over k, where p is the structure morphism X → k. Pick a k-rational point of X, then
this gives a map σ : k → X which is a section of p, so in this case PicX/S(T ) ∼= ker(Pic(XT ) σ∗

T→ Pic(T )) =:
PicX/S,σ(T ).
Notation 7.1. If X, T are schemes over k, then we denote by XT the base change X ×k T . If K is a field,
then we will simply write K for both Spec K and K.

7.1 Representing the Picard functor
We want to use the following representability criterion (which is similar to the one we know from Talk 3):

Lemma 7.2 (Stacks [0B9Q]). Let k be a field. Let G : (Sch/k)opp → Groups be a functor. Assume that

1. G satisfies the sheaf property for the Zariski topology,

2. there exists a subfunctor F ⊂ G such that

(a) F is representable and open
(b) for every field extension K of k and g ∈ G(K) there exists a g′ ∈ G(k) such that g′g ∈ F (K).

Then G is representable by a group scheme over k.

In Talk 6, we constructed the subfunctor F of PicX/S,σ(T ) and proved that it satisfies 2(a). It remains to
show 1 and 2(b).

Proposition 7.3. PicX/k,σ has the sheaf property for the Zariski topology.

Proof. Let T =
⋃

i∈I Ti be an open cover, define Tij := Ti ∩ Tj and let Li be elements of PicX/k,σ(Ti), that
is, line bundles on XTi

with σ∗
Ti

Li
∼= OTi

. Fix such an isomorphism αi : OTi
→ σ∗

Ti
Li for every i. Assume Li

and Lj map to the same elements of PicX/k,σ(Tij) for all i and j. That is, we can choose isomorphisms

ϕij : Li|XTij
→ Lj |XTij

for all i, j.
Now consider the automorphisms

αj |−1
Tij

◦ σ∗
Tij

ϕij ◦ αi|Tij

of OTij . They are given by multiplication with some unit uij ∈ Γ(Tij , OTij )×. By scaling ϕij with u−1
ij , we

may assume w.l.o.g. that all uij are equal to 1, i.e. that σ∗
Tij

ϕij = αj |Tij
αi|−1

Tij
. Now for i, j, k ∈ I define

Tijk := Tij ∩ Tk. Then

σ∗
Tijk

(ϕki|XTijk
◦ ϕjk|XTijk

◦ ϕij |XTijk
) = αi|Tijk

αi|−1
Tijk

= id

Now use the following important fact: Γ(XT , OXT
) ∼= Γ(T, OT ) via f∗

T and σ∗
T (This is follows from flat

base change). Since automorphisms of σ∗
Tijk

Li|XTijk
correspond to elements of Γ(XTijk

, OXTijk
)×, it follows

that ϕki|XTijk
◦ ϕjk|XTijk

◦ ϕij |XTijk
= id; by the same argument we see that ϕki|XTijk

= ϕik|−1
XTijk

and thus,
ϕik|XTijk

= ϕjk|XTijk
◦ ϕij |XTijk

. So the Li glue to a line bundle L on XT with σ∗
Tijk

L ∼= OT .
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Recall our definition of the subfunctor F : For a scheme T = Spec(R) over k, F (T ) ⊆ PicX/k(T ) consists
of those line bundles L ∈ PicX/k(T ) such that

Hi(XT , L) =
{

0 i > 0
invertible R-module i = 0

.

So we need to check the following for 2(c):

Lemma 7.4. Let K/k be a field extension and let L ∈ PicX/k,σ(K). Then there exists a line bundle
L0 ∈ PicX/k,σ(k) such that dimK H0(XK , L ⊗OXK

L0|XK
) = 1 and dimK H1(XK , L ⊗OXK

L0|XK
) = 0.

Proof. We pick an ample line bundle L0 on X and replace L by L ⊗OXK
L0|⊗n

XK
. Note that L0|XK

is still an
ample line bundle, as XK → X is affine. We choose n >> 0 such that H0(XK , L) ̸= 0 and Hi(XK , L) = 0
for all i > 0. That this is possible will probably be proven in the lecture (it is Theorem 15.2 in Scholze’s
Algebraic Geometry II notes).
Now the idea is to inductively reduce the dimension of H0(XK , L). Assume t := dimK H0(XK , L) > 1.
We know that we have infinitely many k-rational points on X (as k is algebraically closed). Moreover, if x is
a k-rational point, then xK is a K-rational point. Thus, the points xK form a Zariski-dense subset of XK

(the topology on XK is cofinite).
Now let s ∈ H0(XK , L) be nonzero. Then there is some k-rational point x such that s does not vanish in xK .
Let I be the ideal sheaf of i : xK → XK , i.e. we have an exact sequence

0 I OXK
i∗OxK

0

Tensoring this with L we get

0 I ⊗OXK
L L i∗OxK

⊗OXK
L 0

where the last term is isomorphic to i∗i∗L. Now H0(XK , i∗i∗L) = H0(xK , i∗L) is a one-dimensional K-vector
space (this is just the stalk of L at xK). Note that s not vanishing in xK means that i∗s ̸= 0; thus the
morphism H0(XK , L) → H0(XK , i∗i∗L) of Γ(XK , OXK

) = K-modules is surjective.
So dimK H0(XK , I ⊗OXK

L) = t − 1. To conclude by induction, note that the surjectivity also implies
H1(XK , I ⊗OXK

L) = 0 since H1(XK , L) = 0 by assumption and thus Hi(XK , I ⊗OXK
L) = 0 for all i > 0

(for i > 1 they vanish anyway since XK is a projective curve). Finally, note that I is the pullback of the
ideal sheaf of the k-rational point x to XK and all points on a smooth curve are Cartier-Divisors, so we still
tensor with the pullback of a line bundle on X.

Corollary 7.5. The Picard functor PicX/k is representable by a group scheme PicX/k.

7.2 The Abel-Jacobi map and the geometry of the Picard scheme
Recall the Abel-Jacobi map AJ ′ from Talk 1 that assignes to each effective Cartier divisor D of degree d on
X a line bundle of degree d on X by sending it to O(D). (Recall that the degree of a line bundle L on C is
defined as deg L := χ(X, L) − χ(X, OX).) We want to construct a scheme version of this; we already have
the scheme Hilbd

X/k whose k-rational points are Cartier-Divisors of degree d; now it would be nice if we had a
subscheme of Picd

X/k whose k-rational points are line bundles of degree d.

Definition 7.6. We define Picd
X/k,σ(T ) as the subset of PicX/k,σ(T ) consisting of line bundles L such that

deg(Xt, Lt) = d for all t ∈ T , where we write Xt for Xκ(t) and Lt for L|Xt
.
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We claim that this is an open subfunctor. We need to check:

1. If f : T ′ → T is a morphism of schemes and L ∈ Picd
X/k,σ(T ), then f∗

XL ∈ Picd
X/k,σ(T ′).

2. For every line bundle L ∈ PicX/k,σ(T ) there exists an open subscheme UL,d of T s.t. a morphism
f : T ′ → T factors through UL,d if and only if f∗

XL ∈ Picd
X/k,σ(T ′).

This follows from the following two results:

Lemma 7.7 (Special case of Stacks [0B59]). Let K/k be an field extension. Let X be a proper scheme of
dimension ≤ 1 over k. Let L be a line bundle on X. Then the degree of L/X/k is equal to the degree of
LK/XK/K.

This implies 1.. We will also use this fact extensively in the rest of this talk.
2. is then simply a consequence of

Theorem 7.8 (Special case of Stacks [0B9T]). Let f : Y → T be a flat, proper morphism of finite presentation
such that all fibers of f are curves and let L be a line bundle on Y . Then the function

t 7→ deg Lt

is locally constant on T .

(choose UL,d as the preimage of d under this locally constant function on T ).
Note that

∐
d∈Z UL,d

∼= T .
Now observe that if Luniv is the universal element of PicX/k,σ, then ULuniv,d represents Picd

X/k,σ (just by
Yoneda formalism). Thus, we get a decomposition

PicX/k,σ =
∐
d∈Z

Picd
X/k,σ

Also note that Picd
X/k,σ

∼= Pice
X/k,σ by translation with k-rational points of Pice−d

X/k,σ (i.e. tensoring with line
bundles L on X of degree e − d), since deg : Pic(X) → (Z, +) is a group homomorphism:

Lemma 7.9. Let L1, L2 line bundles on X s.t. deg(L1,t) = d and deg(L2,t) = e. Then deg(L1 ⊗OXT
L2) =

d + e.

Proof. Line bundles on X correspond to divisors on X: Pick an ample line bundle L0 on X. It has non-zero
global sections, so it has a regular section, and thus there is Cartier-Divisor D0 on X with O(D0) = L0. We
know that there is an n ∈ N s.t. L1 ⊗ L⊗n

0 has global sections and again we get a corresponding Cartier
Divisor D1. Then O(D1 − nD0) ∼= L1 by our results in Talk 1.
So by weak Riemann-Roch (Talk 1), L1 and L2 correspond to divisors D1 of degree d and D2 of degree e.
Then D1 + D2 has degree d + e and corresponds to the line bundle L1 ⊗OX

L2. Thus, deg(L1 ⊗OX
L2) = d + e

again by weak Riemann-Roch.

Remark 7.10. Let L be a representative of some element in PicX/k(T ). Then under the isomorphism
PicX/k(T ) ∼= PicX/k,σ(T ), L maps to L ⊗OXT

(σT ◦ pT )∗L⊗−1 =: Lσ. By the following two lemma, deg Lt =
deg Lσ

t for all t. Thus, we also get an open subfunctor Picd
X/k(T ) of PicX/k(T ) for all d, whose values on T

consist of all equivalence classes of line bundles which have elements with fiber-wise degree d and which is
isomorphic to Picd

X/k,σ(T ) under the restriction of the isomorphism PicX/k(T ) ∼= PicX/k,σ(T ).

Lemma 7.11. Let t ∈ T , L0 a line bundle on T and iX : Xκ(t) → XT . Then deg(Xκ(t), i∗
Xp∗

T L0) = 0.
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Proof. This is obvious by commutativity of the following diagram:

Xt XT

κ(t) T

pκ(t)

iX

pT

i

Now we are ready to construct the scheme version of the Abel-Jacobi-Map.
Notation 7.12. Let F be a scheme representing the functor F : Schopp → Set and Z ∈ F (X). Then we denote
by [Z]F the morphism X → F corresponding to Z. (We omit the subscript if it is clear which functor is
meant.)
Remark 7.13. We will use the following fact: If we have a commutative diagram

X2

X1 F
[Z1]

[Z2]
φ

then Z1 = F (φ)(Z2). This is just naturality of the isomorphism hF
∼= F .

Fix some d ∈ N0. The identity Hilbd
X/k → Hilbd

X/k corresponds to a closed subscheme Duniv ⊆ Hilbd
X/k ×X

such that the morphism Duniv → Hilbd
X/k is finite locally free of rank d.

Proposition 7.14. Let T be a scheme over k. If D ∈ Hilbd
X/k(T ), then [D]∗XO(Duniv) ∼= O(D).

Proof. We consider the commutative diagram

Hilbd
X/k

T Hilbd
X/k

[Duniv]

[D]

[D]

By definition of the Hilbd
X/k functor, this implies D = Duniv ×[D]X

XT , i.e. the diagram

D Duniv

XT Hilbd
X/k × X

[D]X

is cartesian, so with i := [D]X we have D = i−1(Duniv).
It remains to show that i∗O(Duniv) = O(i−1Duniv). This holds by the following lemma.

Lemma 7.15. If f : Y → X is a morphism of schemes and D is a Cartier divisor on X such that f−1X is
again a Cartier divisor, then f∗O(D) = O(f−1D).

Proof (Sketch). Assume Y = Spec B, X = Spec A and write D = A/(i) where i is a nonzero divisor. Then
f−1D = B ⊗A A/(i) ∼= B/iB. Thus, as f−1D is a Cartier divisor, i is still a nonzero divisor in B, which
is equivalent to (i) ⊗A B ∼= iB. In the general case, these local isomorphisms glue to an isomorphism
f∗O(−D) ∼= O(−f−1D).
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Let K/k be a field extension. Then a morphism K → Hilbd defines a Cartier divisor D ⊆ XK

of degree d by Talk 4. Let K̄ be the algebraic closure of K. DXK̄
is still a Cartier divisor of de-

gree d. By Proposition 7.14, O(DXK̄
) ∼= O(Duniv)|XK̄

; and thus by (weak) Riemann-Roch (Talk 1),
deg(XK , O(Duniv)|XK

) = deg(XK̄ , O(Duniv)|XK̄
) = d.

So O(Duniv) defines an element of Picd
X/k(Hilbd

X/k) and we set γd := [O(Duniv)].

Corollary 7.16 (γd is a scheme version of AJ ′ from Talk 1). Let T be a scheme over k. If D ∈ Hilbd
X/k(T ),

then γd ◦ [D] = [O(D)].

Proof. By definition of the Picard functor, γd ◦ [D] corresponds to the line bundle [D]∗XO(Duniv) which is
isomorphic to O(D) by Proposition 7.14.

In particular, on k-rational points this is really AJ ′.
Example 7.17. Since Hilb0

X/k
∼= k, γ0 corresponds to a k-rational point of Pic0

X/k; as the unique map
k → Hilb0

X/k corresponds to the Cartier divisor ∅, it follows that this k-rational point corresponds to the
structure sheaf on X.

Fibers of γd have an interesting property:

Theorem 7.18. The fiber of γd over a point p = [L] is isomorphic to Pdimκ(p) H0(Xκ(p),L)−1
κ(p) if H0(Xκ(p), L) ̸= 0.

In particular, γd is surjective for d ≥ g.

Proof (Sketch). Let p ∈ Picd
X/k, K := κ(p) and let L be the line bundle on XK of degree d corresponding to

p. Consider the fiber Z := K ×[L] Hilbd
X/k. Let T = Spec R an affine scheme, then the T -valued points of Z

correspond to Cartier-Divisors D ⊆ XT with O(D) ∼= L|XT
by Corollary 7.16:

T Z K

Hilbd
X/k Picd

X/k

[L]

γd

[D]

First, we only consider the case T = Spec L, where L is another field. Automorphisms of O(D) are precisely
given by multiplication with an invertible scalar, i.e. the elements of H0(XT , OXT

)× ∼= H0(T, OT )× = L×.
On the other hand, the Cartier divisors D with O(D) ∼= L|XT

are in 1-1-correspondenze with the regular
sections of H0(XT , L|XT

) ∼= H0(T, OT ) ⊗K H0(XK , L) ∼= L ⊗K H0(XK , L) (these isomorphisms hold by
flat base change), which are all non-zero sections, since XL is still integral. This shows that the Spec L-
valued points of the fiber are in bijection with Ldim H0(XK ,L)\ {0} /L×, which are the Spec L-valued points of
PdimK H0(XK ,L)−1

K .
We need to show the corresponding statement for general T = Spec R and naturality of this isomorphism as
well to conclude the proof. For d > 2g − 2, we can use the following argument:
There is a complex φ : K0 → K1 of K-vector spaces (mentioned in Talk 6) with the following property:
Hi(XT , L|XT

) = Hi(R ⊗K K0 → R ⊗K K1) for all i ∈ N0 and T = Spec R. For d > 2g − 2, we know that
H1(κ(t)⊗RK0 → κ(t)⊗RK1) = H1(Xκ(t), Lκ(t)) = 0 for all t ∈ T by Serre duality; so κ(t)⊗RK0 → κ(t)⊗RK1
is surjective for all t, but then already K0 → K1 is surjective by Nakayama. Thus, the complex is isomorphic
to a projection ker φ ⊕ K1 → K1 and we see that E := ker(φ) = H0(XK , L) is a finite K-vector space with
H0(XT , L|XT

) = R ⊗K E.
Now again, a relative Cartier divisor D on XT with O(D) ∼= L|XT

corresponds to a regular section of L|XT
, i.e.

a map s : R → R ⊗K E, up to elements in R×. D is a relative effective Cartier divisor if in addition the map
D → T is flat; this is the case if and only if s has a splitting, meaning that the dual map sv : R ⊗K Ev → R

is surjective. Now we know that these surjections correspond to the T -valued points of Pdim H0(XK ,L)−1 (here
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it must be taken into account that L|XT
is only determined up to line bundles on T ).

We omit the proof for the case d ≤ 2g − 2. However, to conclude surjectivity for d ≥ g, the part we proved
suffices: The assumption d ≥ g means that χ(XK , L) − χ(XK , OXK

) = d ≥ g = 1 − χ(XK , OXK
), i.e.

dim H0(XK , L) ≥ 1 + dim H1(XK , L) > 0 and we showed that in this case the fiber is non-empty.

Next, we want to think about the geometry of PicX/k. Recall that we proved that our open subfunctor F

of PicX/d is representable by a non-empty open U of Hilbg
X/k. Actually, the proof shows that the restriction

of γg to U is an open immersion. Moreover, we proved above that translates of U (as an open in PicX/k) by
k-rational points of PicX/k cover the whole scheme. We know that Hilbg

X/k is smooth of dimension g; thus,
the same holds for PicX/k.

Corollary 7.19. γd is smooth for d > 2g − 2

Proof. For deg L > 2g − 2, we have dimk H0(X, L) = d + 1 − g by Serre duality (Stacks [0B90]). Thus, all
fibres of γd have dimension d + 1 − g − 1 = d − g = dim(Hilbd

X/k) − dim(Picd
X/k), which implies that γd is flat

(Stacks [00R4]). As all fibers are smooth, this already implies that γd is smooth.

Next, we will prove that Picd
X/k is proper over k for all d ∈ Z.

Lemma 7.20. A group scheme G over a field k is separated

Proof. Look at the following cartesian diagram:

G G ×k G

k G

∆G/k

ϕ

e

where ϕ is the map (g, g′) 7→ m(i(g), g′). A k-rational point of G defines a closed immersion, so the diagonal
is a closed immersion, i.e. G is separated.

So PicX/k is separated. For d ≥ g, surjectivity of γd and separatedness of Picd
X/k already imply properness

of Picd
X/k: Indeed, as Picd

X/k is smooth and thus locally of finite type, we only have to prove that Picd
X/k → k

is universally closed (this implies quasi-compactness; Stacks [04XU]). But this just follows from universally
closedness of HilbX/k → k, as surjectivity is stable under base change.
Now properness in the case d ≥ g already proves properness for all d by translation (by Lemma 7.9 we just
need to tensor with an invertible OX -module of sufficiently low degree).
Finally, note that Picd

X/k is irreducible for d ≥ g since Hilbd
X/k is irreducible and γd is surjective, and reduced

because it is smooth. Thus, it is integral. Again, by translation this holds for all d.

Corollary 7.21. For all d ∈ Z, Picd
X/k is a smooth, proper, g-dimensional variety. (variety = integral +

separated, finite type over k).

By Lemma 7.9 we see that

Corollary 7.22. Pic0
X/k is an open and closed subgroup scheme

Definition 7.23. Let k be a field. An abelian variety is a group scheme over k which is also a proper,
geometrically integral variety over k.

Corollary 7.24. Pic0
X/k is an abelian variety.
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7.3 The Picard scheme of curves of genus 0 and 1
Let X be a smooth projective curve of genus 0 over an algebraically closed field k. Then γ0 is an isomorphism,
because γ0 is surjective and the nonempty open of Hilb0

X/k on which γ0 induces an open immersion has to be
Hilb0

X/k = k itself. Thus, for all d ∈ Z, Picd
X/k

∼= Pic0
X/k

∼= Spec k. In particular, for each d ∈ Z and every
scheme T over k there is exactly one line bundle of degree d on OXT

; thus, Pic(XT ) = Z. One can show that
the only smooth projective curve of genus 0 over an algebraically closed field is P1

k.
More interesting is the case g = 1.

Definition 7.25. An elliptic curve is a smooth projective curve of genus 1 with a distinguished point

We know that γ1 is surjective. Note that Hilb1
X/k

∼= X and Pic1
X/k is a smooth, proper, one-dimensional

variety, so γ1 is a dominant map of proper normal curves. Now recall that then Hilb1
X/k

∼= Pic1
X/k (via

γ1) if γ1 induces an isomorphism of function fields (we have an equivalence of categories {Proper, normal
curves over k with dominant morphisms} ↔ {Fin. generated field extensions of k with transcendence degree
1}). But as there is some non-empty open of Hilb1

X/k on which γ1 is an open immersion, this holds; so
Picd

X/k
∼= Pic1

X/k
∼= X for all d ∈ Z.

The beautiful thing about this is that we know that Pic0
X/k is an abelian variety; so X is naturally equipped

with a group structure.
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